首页> 外文OA文献 >Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometric analysis. I: The convective-diffusive context
【2h】

Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometric analysis. I: The convective-diffusive context

机译:稳定配方的正确能量演变:关系   Vms,sUpG和GLs之间通过动态正交小尺度和   等几何分析。 I:对流 - 扩散背景

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents the construction of novel stabilized finite elementmethods in the convective-diffusive context that exhibit correct-energybehavior. Classical stabilized formulations can create unwanted artificialenergy. Our contribution corrects this undesired property by employing theconcepts of dynamic as well as orthogonal small-scales within the variationalmultiscale framework (VMS). The desire for correct energy indicates that thelarge- and small-scales should be $H_0^1$-orthogonal. Using this orthogonalitythe VMS method can be converted into the streamline-upwind Petrov-Galerkin(SUPG) or the Galerkin/least-squares (GLS) method. Incorporating both large-and small-scales in the energy definition asks for dynamic behavior of thesmall-scales. Therefore, the large- and small-scales are treated as separateequations. Two consistent variational formulations which depict correct-energy behaviorare proposed: (i) the Galerkin/least-squares method with dynamic small-scales(GLSD) and (ii) the dynamic orthogonal formulation (DO). The methods arepresented in combination with an energy-decaying generalized-$\alpha$time-integrator. Numerical verification shows that dissipation due to thesmall-scales in classical stabilized methods can become negative, both on alocal and global scale. The results show that without loss of accuracy thecorrect-energy behavior can be recovered by the proposed methods. Thecomputations employ NURBS-based isogeometric analysis for the spatialdiscretization.
机译:本文提出了在对流-扩散环境中具有正确能量行为的新型稳定有限元方法的构造。经典的稳定配方会产生不需要的人造能量。我们的贡献通过在可变多尺度框架(VMS)中采用动态以及正交小尺度的概念来纠正这种不良特性。对正确能量的渴望表明,大尺度和小尺度应该是正交的$ H_0 ^ 1 $。使用这种正交性,可以将VMS方法转换为流线上风Petrov-Galerkin(SUPG)或Galerkin /最小二乘(GLS)方法。在能量定义中同时包含大尺度和小尺度都要求小尺度的动态行为。因此,将大尺度和小尺度视为单独的等式。提出了两种描述正确能量行为的一致变分公式:(i)具有动态小尺度(GLSD)的Galerkin /最小二乘法和(ii)动态正交公式(DO)。结合能量衰减的广义α时间积分器来表示这些方法。数值验证表明,经典稳定方法中由于小规模产生的耗散在局部和全局范围内都可能变为负值。结果表明,在不损失准确性的情况下,所提出的方法可以恢复正确的能量行为。计算采用基于NURBS的等几何分析进行空间离散化。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号